New Sphingolipids and Other Constituents of Pancovia laurentii

by Ferdinand Tantangmo^a)^b), Bruno Ndjakou Lenta^c), Silvère Ngouela^{*a}), Louis Marie Kamdem^a), Bernard Weniger^b), Etienne Tsamo^{*a}), Annelise Lobstein^b), and Catherine Vonthron-Sénécheau^b)

^a) Department of Organic Chemistry, Faculty of Science, TWAS Research Unit (TRU) of the University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon

(phone: +23799616265; e-mail: tsamo@cm.refer.org (E. Tsamo); phone: +23799955542; e-mail: sngouela@yahoo.fr (S. Ngouela))

^b) Laboratoire d'Innovation Thérapeutique, Pharmacognosie et Molécules Naturelles Bioactives, UMR UDS/CNRS 7200, Faculté de Pharmacie, Université de Strasbourg, BP 60024, F-67401 Illkirch Cedex

^c) Department of Chemistry, Higher Teachers' Training College, University of Yaoundé I,

P.O. Box 47 Yaoundé, Cameroon

Phytochemical investigation of the bark and leaves of *Pancovia laurentii* (Sapindaceae) resulted in the isolation of a new ceramide and a new cerebroside, named pancoviamide (1), and pancovioside (2) respectively, together with six known compounds: uracil, (R)-N-[(1S,2S,3R)-2,3-dihydroxy-1-(hydroxy-methyl)heptadec-5-en-1-yl]-2-hydroxytetracosanamide, stigmasta-7,22-dien-3-ol, β -stitosterol, β -sitosterol 3-O- β -D-glucopyranoside, and 2,3-dihydroxypropyl pentadecanoate. The structures of 1 and 2 were determined by means of spectroscopic methods. Compounds 1 and 2 were tested *in vitro* for their antiprotozoal properties against several protozoa and for their cytotoxicity.

Introduction. - Pancovia laurentii (Sapindaceae) is a small tree that grows in the tropical regions of Cameroon [1]. Plants of Sapindaceae family are largely used in Cameroonian folk medicine to treat several diseases such as malaria, typhoid, stomach ache, ulcer, skin diseases, dysentery, and rheumatism [2][3]. Previous phytochemical investigations of plants of the Sapindaceae family revealed the presence of triterpenoid saponins, polyprenols, flavonoids, sphingolipids, alkaloids, coumarins, and ellagic acid derivatives as major constituents [4-8]. Some of these secondary metabolites exhibited interesting biological activities such as antiplasmodial, anti-inflammatory, antiulcer, cytotoxic, antioxidant, antibacterial, scorpion venom activity, and migraine target [9– 14]. No phytochemical or pharmacological studies have been reported to date on P. laurentii. In a continuing search for bioactive or new compounds from Cameroonian medicinal plants, we have investigated an AcOEt extract of the bark and MeOH extract of the leaves of *P. laurentii*. In this contribution, we report the isolation and structure elucidation of a new ceramide, pancoviamide (1), and a new cerebroside, pancovioside (2). The structures of compounds 1 and 2 were elucidated on the basis of spectroscopic analysis. In addition, the known constituents uracil, (R)-N-[(1S,2S,3R)-2,3-dihydroxy-1-(hydroxymethyl)heptadec-5-en-1-yl]-2-hydroxytetracosanamide, stigmasta-7,22-dien-3-ol, β -stitosterol, β -sitosterol 3-O- β -D-glucopyranoside, and 2,3-dihydroxypropyl pentadecanoate were isolated.

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – The air-dried and ground bark and leaves of *P. laurentii* were extracted separately with MeOH. The residue obtained after evaporation of the solvent from the bark extract was partitioned with $H_2O/AcOEt\ 2:3$. These extracts were subjected to successive column chromatographies, and led to the isolation of eight constituents, including one new ceramide, **1**, and one new cerebroside, **2**.

Compound **1** was isolated as an amorphous powder from the fraction with hexane/ AcOEt 1:1. The molecular formula, $C_{42}H_{83}NO_5$, with two degrees of unsaturation, was deduced from the combination of ESI-MS, and ¹H- and ¹³C-NMR spectral analyses (*Table 1*). The IR spectrum showed vibration for OH groups at 3329 cm⁻¹. The typical IR absorptions at 1618 and 1539 cm⁻¹ suggested an amide linkage, which was confirmed by a signal of N-attached C-atom at $\delta(C)$ 53.1 and a signal of a CO group at $\delta(C)$ 175.4 in the ¹³C-NMR spectrum. The ¹H-NMR spectrum in (D₅)pyridine (*Table 1*) exhibited signals of an amide H-atom (*doublet* at $\delta(H)$ 8.60 (J = 9.2)), of long-chain of CH₂ Hatoms ($\delta(H)$ 1.28–1.33. (br. *s*)), and of two terminal Me groups ($\delta(H)$ 0.88 (t, J = 6.6)), indicating a sphingolipid skeleton [7]. The ¹H-NMR spectrum also displayed five signals, characteristic of H-atoms geminal to OH groups, at $\delta(H)$ 4.42–4.47 (m, H_a–C(1)), 4.51–4.56 (m, H_b–C(1)), 4.36–4.39 (m, H–C(3)), 4.30–4.35 (m, H–C(4)), and 4.64–4.65 (m, H–C(2')). The ¹³C-NMR spectrum displayed signals for four C-atoms linked to O-atoms at $\delta(C)$ 62.2 (C(1)), 76.9 (C(3)), 73.2 (C(4)), and 72.6 (C(2')), respectively, which were assigned on the basis of HSQC data to the

Table 1. NMR Data for Pancoviamide (1). In (D_5)pyridine; δ in ppm, J in Hz.

	$\delta(C)$	$\delta(\mathrm{H})$	¹ H, ¹ H-COSY	¹ H, ¹³ C-HMBC
$H_a - C(1)$	62.2 (<i>t</i>)	4.42-4.47 (<i>m</i>)	$H_{b}-C(1), H-C(2), OH$	C(2), C(3)
$H_b - C(1)$		4.51 - 4.56(m)	$H_a - C(1), H - C(2), OH$	C(2), C(3)
H-C(2)	53.1 (d)	5.11-5.17 (<i>m</i>)	$H_a - C(1), H_b - C(1), H - C(3), NH$	C(1), C(3), C(1')
H-C(3)	76.9(d)	4.36-4.39 (<i>m</i>)	H-C(2), H-C(4), OH	C(2), C(4), C(1), C(5)
H-C(4)	73.2(d)	4.30-4.35 (<i>m</i>)	H-C(3), H-C(5), OH	
$H_a - C(5)$	34.3 (t)	1.93 - 2.01 (m)		
$H_b - C(5)$		2.27 - 2.32(m)		
$CH_2(6-21)$	30.0 - 30.2(t)	1.28–1.33 (br. s)		
CH ₂ (22)	32.3 (t)	1.22–1.25 (<i>m</i>)		
CH ₂ (23)	23.1(t)	1.25 - 1.29(m)		
Me(24)	14.4(q)	0.88 (t, J = 6.6)		
NH		8.60 (d, J = 9.2)	H-C(2)	
H-C(1')	175.4(s)			
H-C(2')	72.6(d)	4.64 - 4.65(m)	H–C(3′), OH	C(1')
$H_{a} - C(3')$	35.8 (t)	2.20 - 2.26(m)	H-C(2')	C(4'), C(1')
$H_b - C(3')$		2.01 - 2.12 (m)	H-C(2')	
H-C(4')	130.8(d)	5.51 - 5.57(m)	H-C(3')	C(6')
H-C(5')	130.9 (d)	5.62 - 5.66(m)	H-C(6')	C(6')
CH ₂ (6')	33.1 (<i>t</i>)	2.16–2.19 (<i>m</i>)	H-C(5')	C(5')
CH ₂ (7')	25.9 (t)	2.01 - 2.12 (m)		
$CH_2(8'-15')$	30.0 - 30.2(t)	1.28–1.33 (br. s)		
CH ₂ (16')	32.3 (t)	1.22 - 1.25 (m)		
$CH_2(17')$	23.1(t)	1.25 - 1.29 (m)	H-C(18')	
Me(18')	14.4(q)	0.88 (t, J = 6.6)	H-C(17')	

previous H-atoms. The locations of four OH groups at C(1), C(3), C(4), and C(2')were determined from the HMBC spectrum, which showed cross-peaks, between the H-atom signal at $\delta(H)$ 4.42–4.47 (m, H_a–C(1)) and the C-atom signals at $\delta(C)$ 53.1 (C(2)) and 76.9 (C(3)), the H-atom signal at $\delta(H) 5.11 - 5.17 (m, H - C(2))$ and the Catom signals at $\delta(C)$ 62.2 (C(1)), 76.9 (C(3)), and 175.4 (C(1')), the H-atom signal at $\delta(H) 4.36 - 4.39 (m, H - C(3))$ and the C-atom signals at $\delta(C) 53.1 (C(2)), 73.2 (C(4)),$ 62.2 (C(1)), and 34.5 (C(5)), and between the H-atom signal at $\delta(H)$ 4.64–4.65 (m, H-C(2') and the C-atom signal at $\delta(C)$ 175.4 (C(1')). The ¹H-NMR spectrum of **1** also showed signals of two olefinic H-atoms of a disubstituted C=C moiety at $\delta(H)$ 5.51– 5.57 (m, H-C(4')) and 5.62-5.66 (m, H-C(5')), which was substantiated by the signals observed in the ¹³C-NMR and DEPT-135 spectra at δ (C) 130.8 and 130.9. In the HMBC spectrum, cross-peaks between the H-atom signal at $\delta(H)$ 2.20–2.26 (m, H_b-C(3')) and the C-atom signals at $\delta(C)$ 130.8 (C(4')) and 175.4 (C(1')), and between the H-atom signal at $\delta(H)$ 2.16–2.19 (m, H–C(6')) and the C-atom signal at $\delta(C)$ 130.8 (C(4')), evidenced the C(4')=C(5') bond. The ¹H,¹H-COSY spectrum showed cross-peaks between the olefinic H-atom signal at $\delta(H)$ 5.51–5.57 (*m*, H–C(4')) and the H-atom signal at $\delta(H) 2.01 - 2.12$ (*m*, H_a-C(3')), the H-atom signal at $\delta(H) 4.64 - 4.65$ (*m*, H-C(2')) and the H-atom signal at $\delta(H) 2.20-2.26$ (m, H_b-C(3')), confirming the location of the C=C bond. In addition, the two CH₂ H-atom signals at $\delta(H) 2.20 - 2.26$ $(m, H_b-C(3'))$ and 2.01–2.12 $(m, H_a-C(3'))$ inter-correlate and also correlate to the signal of a H-atom at the O-bearing C-atom at $\delta(H)$ 4.64–4.65 (m, H–C(2')), suggesting the presence of a -CO-CH(OH)-CH₂-CH=CH moiety [15][16]. The other olefinic H-atom signal at $\delta(H)$ 5.62–5.66 (m, H–C(5')) showed cross-peaks with CH₂ H-atom signals at $\delta(H)$ 2.16–2.19 (m, H–C(6')), which further showed crosspeaks with long-chain CH₂ H-atom signals at $\delta(H)$ 1.28–1.33 (br. s). The configuration of the C=C bond was found to be (E) as evidenced by the chemical shifts of C(3') $(\delta(C) 35.8)$ and C(6') $(\delta(C) 33.1)$. In fact, it is known that the geometry of the C=C bond in the long-chain alkene can be determined on the basis of the ¹³C-NMR chemical shift of the CH₂ C-atom adjacent to the olefinic C-atom, which is observed around $\delta(C)$ 27 in (Z)-isomer and $\delta(C)$ 33 in (E)-isomer [17]. The fatty acid and sphingosine chain lengths were determined by characteristic fragment-ion peaks observed in the different mass spectra. Indeed, the length of the fatty acid was determined from EI-MS (Fig. 1), which showed the ion peak at m/z 289 ([Me(CH₂)₁₂CH=CHCH₂CHOHCOH+Li]⁺)

Fig. 1. Mass fragmentation pattern of compounds 1 and 2

[18][19]. The length of the long-chain base was also obtained from EI-MS (*Fig. 1*), which showed significant fragment-ion peaks at m/z 384 ($[M - C_{16}H_{31}CHOHCONH_2]^+$) and 370 ($[M - CH_3(CH_2)_{19}CHOH]^+$). Consideration of biogenesis and steric hindrance of sphingolipids, and the chemical shift of the H–C(2) signal and the C-atom signals of C(1) to C(4), C(1'), and C(2') of sphingolipids generally allow us to determine the absolute configuration of the phytosphingosine moiety. The H-atom signal at $\delta(H)$ 5.11–5.17 (m, H–C(2)) and the C-atom signals at $\delta(C)$ 62.2 (C(1)), 76.9 (C(3)), 175.4 (C(1')), and 72.6 (C(2')) in **1** were nearly identical to those of previously reported ceramides in the literature [20][21], indicating the same configuration. Thus, the structure of **1** was established as (2R, 4E)-2-hydroxy-N-[(2S, 3S, 4R)-1, 3, 4-trihy-droxytetracosan-2-yl]octadec-4-enamide, named pancoviamide (*Fig. 2*).

Fig. 2. Structures of compounds 1 and 2

Compound 2 was isolated as an amorphous white powder from the fraction with AcOEt/MeOH 9:1. The molecular formula, $C_{48}H_{93}NO_{10}$, with three degrees of unsaturation, was deduced from HR-ESI-MS, which exhibited a pseudo-molecular-ion peak $[M + K]^+$ at m/z 882.64245 (calc. 882.64254), and the combination of ¹H- and ¹³C-NMR spectral analyses (*Table 2*). Compound **2** responded positively to the *Molish* test, suggesting that it was a glycoside. The IR spectrum showed an absorption band at 3306 cm⁻¹ which indicated the presence of OH groups. The typical IR absorptions at 1633 and 1537 cm⁻¹ suggested an amide linkage, which was confirmed by a N-attached C-atom signal at $\delta(C)$ 52.1 and a CO signal at $\delta(C)$ 176.1 in the ¹³C-NMR spectrum. The ¹H-NMR spectrum in (D_5)pyridine (*Table 2*) showed signals of an amide H-atom (doublet at $\delta(H) 8.60 (J=9.2)$), long-chain CH₂ H-atoms ($\delta(H) 1.28 - 1.33 (br. s)$), two terminal Me groups ($\delta(H)$ 0.88 (t, J=6.9)), also indicating, as in **1**, a sphingolipid skeleton [18]. Furthermore, the ¹H-NMR spectrum also exhibited signals of an anomeric H-atom of sugar at $\delta(H)$ 4.96 (d, J = 8.0) and eleven other carbinol H-atoms appearing as *multiplets* between $\delta(H)$ 3.85 and 4.77, and suggesting the glycosphingolipid nature of 2 [18]. The appearance of C-atom signals at $\delta(C)$ 106.0 (C(1'')), 75.6 (C(2'')), 78.8 (C(3'')), 72.8 (C(4'')), 78.9 (C(5'')), and 63.0 (C(6'')) in the ¹³C-NMR spectrum, and the correlation observed in HMBC spectrum between the signals of Hatom at $\delta(H)$ 4.96 and the C-atom at $\delta(C)$ 106.0 are characteristic of a β -glucopyranosyl group as a sugar moiety in 2[22][23]. The other parts of the different spectra of 2 were similar to those of **1**. The EI-MS spectrum (*Fig. 1*), besides the typical fragment-ion peaks of 1, also showed an additional fragment-ion peak at $m/z \ 682 \ ([M+H-162)]^+)$, revealing the elimination of one terminal hexosyl moiety [24], and confirming the existence of the glucopyranosyl group in 2. All these findings indicated that 2 is the

Table 2	NMR Data	for Pancovioside ((2) In	(\mathbf{D}_{\cdot}) nvridine: δ in	nnm <i>I</i> in Hz
	INIMA DUIU	jor i uncovioside (∠a). III ((D_5) pyriame, 0 m	ррш, л ш нг.

$\delta(C)$	$\delta(H)$	¹ H, ¹ H-COSY	¹ H, ¹³ C-HMBC
70.9 (<i>t</i>)	4.50-4.56 (<i>m</i>)	$H_b - C(1), H_b - C(2), OH$	C(2), C(3), C(1")
	4.73-4.77 (<i>m</i>)	$H_a - C(1), H_b - C(2), OH$	C(2), C(3), C(1")
52.1(d)	5.31-5.36 (<i>m</i>)	$H_b-C(1), H_a-C(1), H_b-C(3), NH$	C(1), C(3), C(1')
76.3(d)	4.33-4.36 (<i>m</i>)	H-C(2), H-C(4), OH	
71.9(d)	4.20 - 4.26(m)	H-C(3), H-C(5), OH	C(3)
34.3(d)	1.88 - 1.96 (m)		
	2.15-2.31 (<i>m</i>)		
29.9 - 30.7(t)	1.28–1.33 (br. s)		
32.5(t)	1.21 - 1.25 (m)		
23.4(t)	1.26 - 1.29 (m)		
14.7(q)	0.88(t, J = 6.9)	H-C(23)	
	8.60 (d, J = 9.2)	H-C(2)	C(2), C(1')
176.1 (s)			
72.9(d)	4.56 - 4.60(m)	H-C(3'), OH	C(1')
35.9(t)	2.15 - 2.31 (m)	$H-C(2'), H_b-C(3')$	C(4'), C(1')
	1.97 - 2.05 (m)	$H-C(2'), H-C(4'), H_a-C(3')$	
130.6 (<i>d</i>)	5.44 - 5.57 (m)	H-C(3')	C(6')
130.8(d)	5.44 - 5.57 (m)	H-C(6')	C(6')
33.4(t)	1.97 - 2.05 (m)	H-C(5')	C(5')
27.8(t)	2.06 - 2.11 (m)		
29.9 - 30.7(t)	1.28 - 1.33 (br. s)		
32.5 (t)	1.21 - 1.25 (m)		
23.4(t)	1.26 - 1.29 (m)	H - C(18')	
14.7(q)	0.88(t, J = 6.9)		
106.0(d)	4.96 (d, J = 8.0)	H-C(2")	C(3'')
75.6(d)	4.02 - 4.07 (m)	H-C(1'')	C(3"), C(1")
78.8(d)	4.20 - 4.26(m)		C(2'')
72.8(d)	4.20 - 4.26(m)	H-C(5")	C(5")
78.9(d)	3.85 - 3.90(m)	$H-C(4''), H_a-C(6'')$	
63.0(t)	4.35 - 4.39(m)	$H_{b}-C(6''), H-C(5'')$	C(5'')
	4.50-4.56 (m)	$H_a - C(6'')$	
	$\frac{\delta(C)}{70.9 (t)}$ 52.1 (d) 76.3 (d) 71.9 (d) 34.3 (d) 29.9-30.7 (t) 32.5 (t) 23.4 (t) 14.7 (q) 176.1 (s) 72.9 (d) 35.9 (t) 130.6 (d) 130.8 (d) 33.4 (t) 27.8 (t) 29.9-30.7 (t) 32.5 (t) 23.4 (t) 14.7 (q) 106.0 (d) 75.6 (d) 78.8 (d) 72.8 (d) 78.9 (d) 63.0 (t)	$\begin{array}{c c} \delta({\rm C}) & \delta({\rm H}) \\ \hline \\ \hline 70.9 (t) & 4.50 - 4.56 (m) \\ & 4.73 - 4.77 (m) \\ \hline \\ 52.1 (d) & 5.31 - 5.36 (m) \\ \hline \\ 76.3 (d) & 4.33 - 4.36 (m) \\ \hline \\ 71.9 (d) & 4.20 - 4.26 (m) \\ \hline \\ 34.3 (d) & 1.88 - 1.96 (m) \\ \hline \\ 2.15 - 2.31 (m) \\ \hline \\ 29.9 - 30.7 (t) & 1.28 - 1.33 (br. s) \\ 32.5 (t) & 1.21 - 1.25 (m) \\ \hline \\ 23.4 (t) & 1.26 - 1.29 (m) \\ \hline \\ 14.7 (q) & 0.88 (t, J = 6.9) \\ \hline \\ 8.60 (d, J = 9.2) \\ \hline \\ 176.1 (s) \\ \hline \\ 72.9 (d) & 4.56 - 4.60 (m) \\ \hline \\ 35.9 (t) & 2.15 - 2.31 (m) \\ \hline \\ 1.97 - 2.05 (m) \\ \hline \\ 130.6 (d) & 5.44 - 5.57 (m) \\ \hline \\ 130.8 (d) & 5.44 - 5.57 (m) \\ \hline \\ 33.4 (t) & 1.97 - 2.05 (m) \\ \hline \\ 27.8 (t) & 2.06 - 2.11 (m) \\ \hline \\ 29.9 - 30.7 (t) & 1.28 - 1.33 (br. s) \\ \hline \\ 32.5 (t) & 1.21 - 1.25 (m) \\ \hline \\ 23.4 (t) & 1.26 - 1.29 (m) \\ \hline \\ 14.7 (q) & 0.88 (t, J = 6.9) \\ \hline \\ \hline \\ 106.0 (d) & 4.96 (d, J = 8.0) \\ \hline \\ 75.6 (d) & 4.02 - 4.26 (m) \\ \hline \\ 72.8 (d) & 4.20 - 4.26 (m) \\ \hline \\ 78.9 (d) & 3.85 - 3.90 (m) \\ \hline \\ 63.0 (t) & 4.35 - 4.39 (m) \\ \hline \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

corresponding β -D-glucopyranoside of **1**. On the basis of this evidence, the structure of **2** was assigned as (2R,4E)-N-[(2S,3S,4R)-1- $(\beta$ -D-glucopyranosyloxy)-3,4-dihydroxyte-tracosan-2-yl]-2-hydroxyoctadec-4-enamide, named pancovioside (*Fig. 2*). Previous phytochemical studies in some Sapindaceae species led to the isolation of cerebrosides and ceramides in this family [7][8], with various biological activities [25–27].

The structures of the known compounds were established by comparing their spectral and physical data with reported data as uracil [28], (R)-N-[(1S,2S,3R)-2,3-dihydroxy-1-(hydroxymethyl)heptadec-5-en-1-yl]-2-hydroxytetracosanamide [29], stigmasta-7,22-dien-3-ol [30], β -stitosterol [30], β -sitosterol 3-O- β -D-glucopyranoside [31], and 2,3-dihydroxypropyl pentadecanoate [32].

Compounds 1 and 2 were tested against *Plasmodium falciparum* K1 chloroquineresistant strain, *Leishmania donovani*, *Trypanosoma brucei rhodesiense*, and *Trypanosoma cruzi*, protozoa responsible for malaria, visceral leishmaniasis, African trypanosomiasis, and chagaes disease, respectively, according to the method described in [33]. Compounds 1 and 2, together with crude extracts, were also tested for their cytotoxicities. However, no significant effect was detected in this bioassay with the two compounds ($IC_{50} > 5$; *Table 3*).

Table 3. In vitro Antiprotozoal and Cytotoxicity Activities of Compounds 1, 2, and Extracts

Sample	<i>IC</i> ₅₀ [µg/ml]						
	T. b. rhodesiense	T. cruzi	L. donovani	P. falciparum K1	Cytotoxicity L6		
Bark (AcOEt)	nt ^a)	nt	nt	1.14	13.7		
Leaves	nt	nt	nt	3.64	46.6		
1	53.450	>90	> 90	> 5	> 90		
2	>90	>90	>90	> 5	> 90		
Melarsoprol ^b)	0.004						
Benznidazole ^c)		0.536					
Miltefosine ^d)	0.194						
Chloroquine ^e)				0.037			
Podophyllotoxin ^f)					0.004		

^a) nt = Not tested. ^b) Reference drug for *T. b. rhodesiense.* ^c) Reference drug for *T. cruzi.* ^d) Reference drug for *L. donovani.* ^e) Reference drug for *P. falciparum.* ^f) Reference drug for the cytotoxicity test.

We wish to acknowledge the Service de Coopération et d'Action Culturelle de l'Ambassade de France au Cameroun for awarding a grant to F. Tantangmo at Strasbourg University, and The Academy of Science for the Developing World (TWAS) for awarding a research grant No. 07-141 LDC/CHE/AF/AC-UNESCO FR: 3240171776 to our TWAS Research Unit. We also thank Mr. P. Chabert and Mr. C. Antheaume for their contribution to the structure elucidation and NMR analysis, respectively.

Experimental Part

General. M.p.: Büchi-540 melting-point apparatus. Optical rotations: in CHCl₃/MeOH soln. on a Jasco digital polarimeter (model *DIP-360*). IR Spectra: Jasco Fourier-transform IR spectrometer. ¹H- and ¹³C-NMR spectra: Bruker spectrometer equipped with 5-mm ¹H and ¹³C probes operating at 500 and 125 MHz resp., with TMS as internal standard. Flash column chromatography (CC): silica gel (SiO₂; 230–400 and 70–230 mesh; Merck). TLC: percolated aluminium silica gel 60 F_{254} sheets; with different mixtures of petroleum ether (PE), hexane, AcOEt, and acetone as eluents; spots were visualized under UV light (254 and 365 nm) or with MeOH/H₂SO₄ reagent.

Plant Material. The stem bark and leaves of *Pancovia laurentii* were collected in August 2008 at Mont Kala (Yaoundé) in the Centre province of Cameroon and identified by Mr. V. Nana, botanist at the National Herbarium of Cameroon, where a voucher specimen has been deposited (N° 3816/SFRK).

Extraction and Isolation. The dried bark (2 kg) and leaves (800 g) of *P. laurentii* were extracted with MeOH (2×101) for 48 h. The extracts were concentrated under vacuum at r.t. to afford 90 g (brown) and 20 g (green) extracts, resp. The bark extract was suspended in H₂O and extracted successively with AcOEt and BuOH to afford 30 and 45 g extracts, resp. The latter AcOEt bark extract (25 g) was fractionated by CC (SiO₂, 230–400 mesh; gradient mixtures hexane/AcOEt). Ninety fractions of 400 ml each were collected and combined on the basis of TLC to yield four main fractions: *Fr. 1* (2.0 g), *Fr. 2* (5.1 g), *Fr. 3* (6.4 g), and *Fr. 4* (10.5 g).

Fr. 1 and *Fr. 4* were complex mixtures that were not further studied. *Fr. 2* (5.1 g) was subjected to CC (SiO₂, 70–230 mesh; hexane/AcOEt mixtures of increasing polarity) and resulted in the collection of 176 fractions of 150 ml each, which were combined on the basis of TLC analysis. Further purification of *Subfrs. 20–35* afforded β -sitosterol (200 mg) and 2,3-dihydroxypropylpentadecanoate (28 mg). *Subfrs. 123* and *134* yield (*R*)-*N*-[(1*S*,2*S*,3*R*)-2,3-dihydroxy-1-(hydroxymethyl)heptadec-5-en-1-yl]-2-hydroxy-

tetracosanamide (11 mg). *Fr.* 3 (6.4 g) was subjected to CC (SiO₂, 70–230 mesh; hexane/AcOEt gradient) and yielded β -sitosterol 3-*O*- β -D-glucopyranoside (400 mg) and pancovioside (**2**; 4 mg).

The MeOH leaves extract (17 g) was fractionated by CC (SiO₂, 230–400 mesh; hexane/AcOEt mixtures of increasing polarity). Seventy fractions of 200 ml each were collected and combined on the basis of TLC analysis to yield three main fractions: *Fr. A* (1.5 g), *Fr. B* (4.2 g), and *Fr. C* (7.0 g). *Fr. C* was a complex mixture that was not further studied. *Fr. B* (4.2 g) was subjected CC (SiO₂, 70–230 mesh; hexane/AcOEt gradient of increasing polarity) and resulted in the collection of 300 fractions of 150 ml each. Further purification of *Subfrs. 200–237* afforded *pancoviamide* (1; 5 mg). *Subfrs. 270–290* yielded uracil (100 mg). Chromatography of *Fr. A* (1.5 g) yielded essentially stigmasta-7,22-dien-3-ol (1300 mg).

Pancoviamide (=(2R,4E)-2-Hydroxy-N-[(2S,3S,4R)-1,3,4-trihydroxytetracosan-2-yl]octadec-4-enamide; **1**). Colorless powder. M.p. 145.4°. $[a]_{20}^{20} = +16.66$ (c = 0.006, CHCl₃/MeOH 1:1). IR (KBr): 3329, 1618, 1539. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS: 688 ($[M + Li]^+$), 289 ($[Me(CH_2)_{12}CH=CHCH_2CHOHCOH + Li]^+$). EI-MS: 384 (25, $[M - C_{16}H_{31}CHOHCONH_2]^+$), 370 (30, $[M - Me(CH_2)_{19}CHOH]^+$).

Pancovioside (=(2R,4E)-N-*[*(2S,3S,4R)-*1*-(β -D-*Glucopyranosyloxy*)-*3*,4-*dihydroxytetracosan*-2-*yl*)-2-*hydroxyoctadec*-4-*enamide*; **2**). Colorless powder. M.p. 178.0°. [α]_D²⁰ = +10.56 (c = 0.00375, CHCl₃/MeOH 1:1). IR (KBr): 3306, 1633, 1537, 1072. ¹H- and ¹³C-NMR: *Table* 2. ESI-MS: 289 ([Me(CH₂)₁₂CH=CHCH₂CHOHCOH + Li]⁺), 682 ([M + H - 162)]⁺). HR-ESI-MS: 882.64245 ([M + K]⁺, C₄₈H₉₃KNO₁₀; calc. 882.64254). EI-MS: 384 (50, [M - C₁₆H₃₁CHOHCONH₂]⁺), 682 (100, [M + H - 162)]⁺), 370 (30, [M - Me(CH₂)₁₉CHOH]⁺).

REFERENCES

- A. Aubreville, J. F. Leroy, 'Flore du Cameroun: Les Sapindaceae', Muséum National d'Histoire Naturelle, Paris, 1973, Vol. 1, p. 3.
- [2] W. Löscher, D. Hönack, C. P. Fassbender, B. Nolting, Epilepsy Res. 1991, 8, 171.
- [3] A. Raponda-Walker, R. Sillans, 'Les plantes utiles du Gabon', Paris, 1961, p. 388.
- [4] C. S. Weckerle, M. A. Stutz, T. W. Baumann, Phytochemistry 2003, 64, 735.
- [5] L. Voutquenne, C. Lavaud, G. Massiot, C. Delaude, *Phytochemistry* 1998, 49, 2081.
- [6] K. Sachdev, D. K. Kulshreshtha, Phytochemistry 1983, 22, 1253.
- [7] R. S. Miemanang, K. Krohn, H. Hussain, S. F. Kouam, E. Dongo, Z. Naturforsch., B 2006, 61, 1123.
- [8] R. F. Soh, J. K. Bankeu, B. N. Lenta, B. M. Mba'ning, S. Ngouela, E. Tsamo, N. Sewald, Z. Naturforsch., B 2009, 64, 1070.
- [9] M. L. de Mesquita, P. Grellier, A. Blond, J.-P. Brouard, J. E. de Paula, L. S. Espindola, L. Mambu, Bioorg. Med. Chem. 2005, 13, 4499.
- [10] O. K. Yemitan, O. O. Adeyemi, Fitoterapia 2005, 76, 412.
- [11] N. Uawonggul, A. Chaveerach, S. Thammasirirak, T. Arkaravichien, C. Chuachan, S. Daduang, J. Ethnopharmacol. 2006, 103, 201.
- [12] A. Basile, L. Ferrara, M. Del Pezzo, G. Mele, S. Sorbo, P. Bassi, D. Montesano, J. Ethnopharmacol. 2005, 102, 32.
- [13] A. L. Meyer Albiero, J. A. A. Sertié, E. M. Bacchi, J. Ethnopharmacol. 2002, 82, 41.
- [14] S. E. Besra, R. M. Sharma, A. Gomes, J. Ethnopharmacol. 1996, 54, 1.
- [15] K. Chebaane, M. Guyot, Tetrahedron Lett. 1986, 27, 1495.
- [16] R. C. Bheemasankara, C. Satyanarayana, Ind. J. Chem., Sect. B 1994, 33, 97.
- [17] N. Fusetani, K. Yasumoto, S. Matsunaga, H. Hirota, Tetrahedron Lett. 1989, 30, 6891.
- [18] D. Tazoo, K. Krohn, H. Hussain, S. F. Kouam, E. Dongo, Z. Naturforsch., B 2007, 62, 1208.
- [19] N. Mukhtar, K. Iqbal, I. Anis, A. Malik, Phytochemistry 2002, 61, 1005.
- [20] F. Cateni, J. Zilic, G. Falsone, G. Scialino, E. Banfi, Bioorg. Med. Chem. Lett. 2003, 13, 4345.
- [21] N.-Y. Yang, D.-C. Ren, J.-A. Duan, X.-H. Xu, N. Xie, L.-J. Tian, Helv. Chim. Acta 2009, 92, 291.
- [22] L. P. Sandjo, P. Hannewald, M. Yemloul, G. Kirsch, B. T. Ngadjui, Helv. Chim. Acta 2008, 91, 1326.
- [23] K. Bock, C. Pedersen, Adv. Carbohydr. Chem. Biochem. 1983, 41, 27.

- [24] A. L. Tapondjou, A. C. Mitaine-Offer, M. Sautour, T. Miyamoto, M.-A. Lacaille-Dubois, *Biochem. Syst. Ecol.* 2005, 33, 1293.
- [25] T. Natori, M. Morita, K. Akimoto, Y. Koezuka, Tetrahedron 1994, 50, 2771.
- [26] F. Ramos, Y. Takaishi, K. Kawazoe, C. Osorio, C. Duque, R. Acuña, Y. Fujimoto, M. Sato, M. Okamoto, T. Oshikawa, S. U. Ahmed, *Phytochemistry* 2006, 67, 1143.
- [27] F. Cateni, J. Zilic, G. Falsone, F. Hollan, F. Frausin, V. Scarcia, Il Farmaco 2003, 58, 809.
- [28] R.-F. Wang, X.-W. Yang, C.-M. Ma, M.-Y. Shang, J.-Y. Liang, X. Wang, S.-Q. Cai, Y. Shoyama, *Phytochemistry* 2003, 63, 475.
- [29] H. S. Garg, S. Agrawal, J. Nat. Prod. 1995, 58, 442.
- [30] N. V. Kovganko, Z. N. Kashkan, E. V. Borisov, E. V. Batura, Chem. Nat. Compd. 1999, 35, 646.
- [31] F. M. Moghaddam, M. M. Farimani, S. Salahvarzi, G. Amin, Evid. Based Complem. Altern. Med. 2007, 4, 95.
- [32] T. Sabudak, E. Işik, S. Öksüz, Nat. Prod. Res. 2007, 21, 828.
- [33] B. N. Lenta, C. Vonthron-Sénécheau, R. F. Soh, F. Tantangmo, S. Ngouela, M. Kaiser, E. Tsamo, R. Anton, B. Weniger, J. Ethnopharmacol. 2007, 111, 8.

Received February 25, 2010